Publications on Titanium and TiAl-based Alloys

The reverse transformation mechanism of β phase and its stability of Ti-6Al-4V alloy fabricated via laser powder bed fusion
Zhang, W., Xing, L., Zhang, S., Wang, K., Chen, J., Chen, J., . . . Liu, W.
(2024). Materials & Design, 241, 112926.
https://doi.org/10.1016/j.matdes.2024.112926

Process-induced microstructural variations in laser powder bed fusion of novel titanium alloys: A comprehensive study on volumetric energy density and alloying effects
Talebi, M., Niroumand, B., Razaghian, A., Saboori, A., & Iuliano, L.
(2024). Journal of Materials Research and Technology, 31, 1430-1442.
https://doi.org/10.1016/j.jmrt.2024.06.167

Fabrication and evaluation of Ti6Al4V /NiCrBSi bimetallic structure with Nb/Cu bilayer by laser melting deposition
Liu, J., Xiong, X., Liu, Y., Lv, H., Wu, Y., Hu, D., & Chen, H.
(2024). Materials Characterization, 212, 113962.
https://doi.org/10.1016/j.matchar.2024.113962

Characteristics of novel Ti–40Nb-xCu alloy and surface treatment with superior antibacterial property and biocompatibility using micro-arc oxidation for dental implants
Kang, B., Chen, X., Qi, S., Ma, F., & Liu, P.
(2024). Journal of the Mechanical Behavior of Biomedical Materials, 157, 106605.
https://doi.org/10.1016/j.jmbbm.2024.106605

Novel bainitic Ti alloys designed for additive manufacturing
Brooke, R., Zhang, D., Qiu, D., Gibson, M. A., Mayes, E. L. H., Morávek, T., . . . Easton, M.
(2024). Materials & Design, 244, 113176.
https://doi.org/10.1016/j.matdes.2024.113176

Effects of process parameters on the microstructure and mechanical properties of a laser micro-alloying TiB/Ti–6Al–4V titanium matrix composite
Ye, Z., Zhou, X., Zhang, F., Wang, K., Zhao, K., Yu, Z., . . . Tan, H.
(2023). Materials Science and Engineering: A, 873, 144988.
https://doi.org/10.1016/j.msea.2023.144988

Heterostructures enhance simultaneously strength and ductility of a commercial titanium alloy
Wu, D., Hao, M., Zhang, T., Wang, Z., Wang, J., Rao, G., . . . Wang, Y.
(2023). Acta Materialia, 257, 119182.
https://doi.org/10.1016/j.actamat.2023.119182

Formation mechanism of massive phase in the heat affected zone of Ti-6Al-4V fabricated by forging-additive hybrid manufacturing
Ma, J., Li, J., Zhang, Y., Li, Y., Wang, Z., He, F., & Wang, J.
(2023). Optics & Laser Technology, 157, 108698.
https://doi.org/10.1016/j.optlastec.2022.108698

Phase transformation induced twinning in commercially pure titanium: An in-situ study
Lu, S., Lu, S., Chen, B., Qian, M., Wei, Q., Kondoh, K., & Shen, J.
(2023). Scripta Materialia, 229, 115350.
https://doi.org/10.1016/j.scriptamat.2023.115350

Microstructural characterization and mechanical properties of (TiB + TiC) reinforced Ti–6Al–4V prepared by melt hydrogenation
Jiang, B., Wang, L., Yan, H., Teng, J., Wang, B., Luo, L., . . . Fu, H.
(2023). Journal of Materials Research and Technology, 23, 2389-2398.
https://doi.org/10.1016/j.jmrt.2023.01.094

Achieving superior fatigue strength in a powder-metallurgy titanium alloy via in-situ globularization during hot isostatic pressing
Guo, R. P., Cheng, M., Zhang, C. J., Qiao, J. W., Cai, C., Wang, Q. J., . . . Liaw, P. K.
(2023). Scripta Materialia, 228, 115345.
https://doi.org/10.1016/j.scriptamat.2023.115345

Effect of common alloying elements on α’ martensite start temperature in titanium alloys
Zhang, J., Guo, H., Hu, M., Xu, H., Ju, H., Xu, D., Teng, C. and Yang, R.
(2023) Journal of Materials Research and Technology 27: 4562-4572
https://doi.org/10.1016/j.jmrt.2023.10.159

Role of Aluminum rejection from isothermal ω precipitates on the formation of α precipitates in the metastable β-titanium alloy Ti-10V-2Fe-3Al
Mantri, S. A., Dasari, S., Sharma, A., Zheng, Y., Fraser, H. L. and Banerjee, R.
(2023) Scripta Materialia 234: 115565
https://doi.org/10.1016/j.scriptamat.2023.115565

Effect of C addition on microstructure and mechanical properties of laser micro-alloying Ti–Al–V–C titanium matrix composites
Zhang, F., Deng, Y., Zhou, X., Wang, G., Wang, Y., Wang, M., & Tan, H.
(2022). Journal of Materials Research and Technology, 20, 147-156.
https://doi.org/10.1016/j.jmrt.2022.07.059

Phase stabilities and equilibria of the Ti-Al-Nb ternary system at intermediate temperatures I. The 900 °C isothermal section
Xu, S., Lin, J., Liang, Y., He, J., Chen, X., Cha, L. and Jiang, X.
(2022) Journal of Alloys and Compounds 900: 163399
https://doi.org/10.1016/j.jallcom.2021.163399

On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data
Wang, Y., Chu, S., Wang, Z., Li, J. and Wang, J.
(2022) Acta Metallurgica Sinica (English letters) 35(3): 425-438
https://doi.org/10.1007/s40195-021-01318-x

Identification of unusual large zones of Category I triple-alpha-variant clusters in additively manufactured Ti-4Al-2V alloy
Lu, S. L., Wang, J. H., Sun, Y. Y., Song, T. and Qian, M.
(2022) Scripta Materialia 212: 114578
https://doi.org/10.1016/j.scriptamat.2022.114578

In-situ study on γ phase transformation behaviour of γ-TiAl alloys at different cooling rates
Li, Z., Luo, L., Su, Y., Wang, B., Wang, L., Liu, T., Yao, M., Liu, C., Guo, J. and Fu, H.
(2022) Progress in Natural Science: Materials International 32(3): 345-357
https://doi.org/10.1016/j.pnsc.2022.03.004

Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites
Li, D., Wang, B., Luo, L., Li, X., Xu, Y., Li, B., Hawezy, D., Wang, L., Su, Y., Guo, J. and Fu, H.
(2022) Journal of Materials Science & Technology 109: 228-244
https://doi.org/10.1016/j.jmst.2021.08.067

Preparation of low-oxygen-containing Ti–48Al–2Cr–2Nb alloy powder by direct reduction of oxides
Guo, X.-y., Dong, Z.-w., Xia, Y., Liu, P.-d., Liu, H.-n. and Tian, Q.-h.
(2022) Transactions of Nonferrous Metals Society of China 32(4): 1351-1361
https://doi.org/10.1016/S1003-6326(22)65858-8

Thermodynamic Assessment of Ti-Al-Fe-V Quaternary System Applied to Novel Titanium Alloys Designing
Feng, Q., Duan, B., Mao, L., Jiao, L., Chen, G., Lu, X. and Li, C.
(2022) Metals 12(3): 444
https://doi.org/10.3390/met12030444

Omega versus alpha precipitation mediated by process parameters in additively manufactured high strength Ti–1Al–8V–5Fe alloy and its impact on mechanical properties
Nartu, M. S. K. K. Y., Dasari, S., Sharma, A., Mantri, S. A., Sharma, S., Pantawane, M. V., McWilliams, B., Cho, K., Dahotre, N. B. and Banerjee, R.
(2021) Materials Science and Engineering: A 821: 141627
https://doi.org/10.1016/j.msea.2021.141627

Cuboid-like nanostructure strengthened equiatomic Ti–Zr–Nb–Ta medium entropy alloy
Nguyen, V. T., Qian, M., Shi, Z., Tran, X. Q., Fabijanic, D. M., Joseph, J., Qu, D. D., Matsumura, S., Zhang, C., Zhang, F. and Zou, J.
(2020) Materials Science and Engineering: A 798: 140169
https://doi.org/10.1016/j.msea.2020.140169

Additive manufacturing of ultrafine-grained high-strength titanium alloys
Zhang, D., Qiu, D., Gibson, M. A., Zheng, Y., Fraser, H. L., StJohn, D. H. and Easton, M. A.
(2019) Nature 576(7785): 91-95
https://doi.org/10.1038/s41586-019-1783-1

Dissolution of the Alpha Phase in Ti-6Al-4V During Isothermal and Continuous Heat Treatment
Semiatin, S. L., Obstalecki, M., Payton, E. J., Pilchak, A. L., Shade, P. A., Levkulich, N. C., Shank, J. M., Pagan, D. C., Zhang, F. and Tiley, J. S.
(2019) Metallurgical and Materials Transactions A 50(5): 2356-2370
https://doi.org/10.1007/s11661-019-05164-6

Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach
Nguyen, V. T., Qian, M., Shi, Z., Song, T., Huang, L. and Zou, J.
(2019) Materials Science and Engineering: A 742: 762-772
https://doi.org/10.1016/j.msea.2018.11.054

Secondary hardening behavior in Ti alloy
Li, P., Zhang, T., Sun, X., Zhang, H., Wang, D., Sun, Q., Xiao, L. and Sun, J.
(2019) Materials Science and Engineering A 759: 640-647
https://doi.org/10.1016/j.msea.2019.05.070

Calculating Ti-6Al-4V β Transus Through a Chemistry-Based Equation Derived from Combined Element Binary Phase Diagrams
Rogoff, E., Antony, M. and Markle, P.
(2018) Journal of Materials Engineering and Performance 27(10): 5227-5235
https://doi.org/10.1007/s11665-018-3432-5

A novel quaternary equiatomic Ti-Zr-Nb-Ta medium entropy alloy (MEA)
Nguyen, V. T., Qian, M., Shi, Z., Song, T., Huang, L. and Zou, J.
(2018) Intermetallics 101: 39-43
https://doi.org/10.1016/j.intermet.2018.07.008

Collapse of lamellar structure and stability with the addition of Misch metal (Mm) to the cast Ti–Al–Mo–Nb–(Mm) alloys
Choi, K., Kim, M., Zhu, J., Zhang, F., Song, Y., Yi, S. and Park, J. S.
(2018) Journal of Materials Science 53(17): 12504-12511
https://doi.org/10.1007/s10853-018-2439-5

Microstructural Control of TiAl Alloys Containing Mo with Different Aluminum Content
Song, C. G., Lee, J. E., Yi, S. H., Zhu, J., Zhang, F., Song, Y. B. and Park, J. S.
(2017) Science of Advanced Materials 9(11): 1960-1967
https://doi.org/10.1166/sam.2017.2837

The effect of boron on the grain size and texture in additively manufactured β-Ti alloys
Mantri, S. A., Alam, T., Choudhuri, D., Yannetta, C. J., Mikler, C. V., Collins, P. C. and Banerjee, R.
(2017) Journal of Materials Science 52(20): 12455-12466
https://doi.org/10.1007/s10853-017-1371-4

Phase transformations and phase equilibria of a Ti-46.5Al-16.5Nb alloy
Xu, S., Xu, X., Xu, Y., Liang, Y. and Lin, J.
(2016) Materials & Design 101: 88-94
https://doi.org/10.1016/j.matdes.2016.03.131

Predictions of titanium alloy properties using thermodynamic modeling tools
Zhang, F., Xie, F. Y., Chen, S. L., Chang, Y. A., Furrer, D. and Venkatesh, V.
(2005) Journal of Materials Engineering and Performance 14(6): 717-721
https://doi.org/10.1361/105994905X75501%5B/vc_column_text%5D%5B/vc_column%5D%5B/vc_row%5D%5Bvc_row%5D%5Bvc_column%5D%5Bvc_column_text%5D