publications

This page highlights some publications that cited Pandat software for their scientific work. It can give you some ideas on using our tools to facilitate your research and development on materials design.

Lattice Boltzmann modeling of convective heat and solute transfer in additive manufacturing of multi-component alloys
Zhang, W., Sun, D., Chen, W., & Chen, S.
(2024). Additive Manufacturing, 84, 104089.
https://doi.org/10.1016/j.addma.2024.104089

Design of La3-xYxNi9 (x=0–3) alloys with good cyclic stability considering crystal structure and subunit volume
Wang, R., Teng, Y., Xi, J., Sun, X., Luo, Q., & Li, Q.
(2024). International Journal of Hydrogen Energy, 83, 745-754.
https://doi.org/10.1016/j.ijhydene.2024.08.172

Microstructure and thermal stability of a structurally graded tungsten and reduced activation ferritic/martensitic steel joint
Robin, I. K., Gräning, T., Yang, Y., Katoh, Y., & Zinkle, S. J.
(2024). Journal of Materials Research and Technology, 30, 3663-3674.
https://doi.org/10.1016/j.jmrt.2024.04.087

Ultrasonic wave propagation analyses in centrifugally cast stainless steel using solidification grain structure models
Nagai, M., Natsume, Y., Lin, S., & Nakahata, K.
(2024). International Journal of Pressure Vessels and Piping, 209, 105192.
https://doi.org/10.1016/j.ijpvp.2024.105192

An integrated modeling framework with open architecture for phase field simulation of multi-component alloys
Kadirvel, K., Lv, D., Cao, W., Chen, S., Zhang, F., Wang, Y., . . . Tan, W.
(2024). Calphad, 86, 102723.
https://doi.org/10.1016/j.calphad.2024.102723

Novel bainitic Ti alloys designed for additive manufacturing
Brooke, R., Zhang, D., Qiu, D., Gibson, M. A., Mayes, E. L. H., Morávek, T., . . . Easton, M.
(2024). Materials & Design, 244, 113176.
https://doi.org/10.1016/j.matdes.2024.113176

A novel computational framework to calculate Gibbs energy and phase transitions under external magnetic fields applied to the Bi–Mn system
Zeng, Y., Du, Y., & Schmid-Fetzer, R.
(2023). Acta Materialia, 243, 118496.
https://doi.org/10.1016/j.actamat.2022.118496

B2 to ordered omega transformation during isothermal annealing of refractory high entropy alloys: Implications for high temperature phase stability
Sharma, A., Dasari, S., Soni, V., Kloenne, Z., Couzinié, J.-P., Senkov, O. N., . . . Banerjee, R.
(2023). Journal of Alloys and Compounds, 953, 170065.
https://doi.org/10.1016/j.jallcom.2023.170065

CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy
Li, T., Wang, S., Fan, W., Lu, Y., Wang, T., Li, T., & Liaw, P. K.
(2023). Acta Materialia, 246, 118728.
https://doi.org/10.1016/j.actamat.2023.118728

Understanding cellular structure formation in rapidly solidified Al–Ni alloys by constructing solidification microstructure selection maps
Hu, L., Li, Y., Luo, G., Shi, Q., Wang, Y., Ma, S., . . . Chen, Z.
(2023). Additive Manufacturing, 73, 103671.
https://doi.org/10.1016/j.addma.2023.103671

A CALPHAD-MD coupled method to reveal the strengthening mechanism in precipitation-strengthening Cu-Ni-Al alloy with evolving microstructures
Dong, B., Peng, G., Wu, Z., Shan, X., Guo, C., Miao, J., . . . Li, T.
(2023). International Journal of Plasticity, 162, 103540.
https://doi.org/10.1016/j.ijplas.2023.103540