Publications on High Entropy Alloys

Revealing the solidification microstructure evolution and strengthening mechanisms of additive-manufactured W-FeCrCoNi alloy: Experiment and simulation
Yuan, Y., Han, Y., Xu, K., Tang, S., Zhang, Y., Lv, Y., . . . Chang, K.
(2025). Journal of Materials Science & Technology, 204, 302-313.
https://doi.org/10.1016/j.jmst.2024.03.075

Lattice Boltzmann modeling of convective heat and solute transfer in additive manufacturing of multi-component alloys
Zhang, W., Sun, D., Chen, W., & Chen, S.
(2024). Additive Manufacturing, 84, 104089.
https://doi.org/10.1016/j.addma.2024.104089

Accelerated design of L12-strengthened single crystal high entropy alloys based on machine learning and multi-objective optimization
Yang, W., Lin, S., Wang, Q., Liu, C., Qin, J., & Zhang, J.
(2024). Materials Advances, 5(14), 5772-5780.
https://doi.org/10.1039/d4ma00189c

New lightweight high-entropy alloy coatings: Design concept, experimental characterization, and high-temperature oxidation behaviors
Xu, J., Liang, W., Miao, Q., Liu, R., Zang, K., Yu, J., . . . Wang, Y.
(2024). Surface and Coatings Technology, 491, 131154.
https://doi.org/10.1016/j.surfcoat.2024.131154

Design, microstructure, wear and corrosion behaviors of laser clad FeNiCoCrMo0.3Nbx hypoeutectic high entropy alloys coatings
Wu, H., Zhang, S., Zhang, H. F., Wang, R., Wu, C. L., Zhang, C. H., & Chen, J.
(2024). Materials Characterization, 114277.
https://doi.org/10.1016/j.matchar.2024.114277

An ultrafine-grained low-activation multicomponent alloy with exceptional thermal stability and ultrahigh-temperature mechanical properties
Wang, X., Gan, K., Liu, B., Yang, Q., Zhang, Y., Yan, D., & Li, Z.
(2024). Journal of Materials Science & Technology, 197, 116-128.
https://doi.org/10.1016/j.jmst.2024.03.002

Strength-ductility balance of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing
Sui, Q., Wang, Z., Wang, J., Yuan, Q., Mao, S., Yuan, B., . . . Liu, J.
(2024). Journal of Materials Research and Technology, 30, 1992-2003.
https://doi.org/10.1016/j.jmrt.2024.03.207

Repair of tungsten heavy alloy die casting molds with laser cladded CoCrFeNiWx high entropy alloy Coatings: Microstructure, wear properties and tempering stability
Su, J., Li, A., Ruan, Y., Qiu, X., & Liang, J.
(2024). Engineering Failure Analysis, 161, 108291.
https://doi.org/10.1016/j.engfailanal.2024.108291

Computational thermodynamics-guided alloy design and phase stability in CoCrFeMnNi-based medium-and high-entropy alloys: An experimental-theoretical study
Silva, D. D. S., Bertoli, G., Neto, N. D. C., Schell, N., Clarke, K. D., Kaufman, M. J., . . . Bolfarini, C.
(2024). Scripta Materialia, 252, 116264.
https://doi.org/10.1016/j.scriptamat.2024.116264

Investigation on microstructure, wear and friction properties of CoCrFeNiMox high-entropy alloy coatings deposited by powder plasma arc cladding
Ni, J., Wen, M., Jayalakshmi, S., Geng, Y., & Chen, X.
(2024). Materials Today Communications, 39, 108807.
https://doi.org/10.1016/j.mtcomm.2024.108807

Advanced wear protection at high temperatures: A study of Al20V20Cr20Nb(40-x)Mox RHEA coatings on Ti6Al4V by laser cladding
Liu, H., Huang, C., Tu, J., Huang, H., Luo, J., Fang, S., . . . Duan, H.
(2024). Applied Surface Science, 673, 160878.
https://doi.org/10.1016/j.apsusc.2024.160878

Enhanced dynamic-mechanical property and microstructural mechanism of a FeCoNiCrMo0.2 high-entropy alloy fabricated using powder bed fusion
Li, W., Liu, R., Wei, S., Huang, Y., Wu, Q., Fu, A., . . . Wang, B.
(2024). Journal of Materials Research and Technology, 30, 717-732.
https://doi.org/10.1016/j.jmrt.2024.03.113

Effect of annealing on microstructure and properties of AlCoCuFeTi high-entropy alloy fabricated by arc melting
Lai, X., Ren, Y., Wang, Q., Xing, S., Xu, C., Hou, J., . . . Wu, H.
(2024). Intermetallics, 170, 108327.
https://doi.org/10.1016/j.intermet.2024.108327

Effect of phase decomposition on the mechanical properties of Ti-Zr-Nb-Ta-Mo multi-principal element alloys
Lai, W., Zhao, X., Yi, Y., Li, Z., Sun, G., You, D., . . . Wang, X.
(2024). Journal of Materials Science & Technology, 199, 206-221.
https://doi.org/10.1016/j.jmst.2024.01.088

An integrated modeling framework with open architecture for phase field simulation of multi-component alloys
Kadirvel, K., Lv, D., Cao, W., Chen, S., Zhang, F., Wang, Y., . . . Tan, W.
(2024). Calphad, 86, 102723.
https://doi.org/10.1016/j.calphad.2024.102723

Achieving excellent uniform tensile ductility and strength in dislocation-cell-structured high-entropy alloys
Huang, R., Zhang, L., Amar, A., Liaw, P. K., Wang, T., Li, T., & Lu, Y.
(2024). International Journal of Plasticity, 181, 104079.
https://doi.org/10.1016/j.ijplas.2024.104079

Nobility vs. mobility: Insights into molten salt corrosion mechanisms of high-entropy alloys via high-throughput experiments and machine learning
Goh, B., Wang, Y., Nelaturu, P., Zhang, H., Moorehead, M., Duong, T., . . . Couet, A.
(2024). Matter, 7(6), 2313-2335.
https://doi.org/10.1016/j.matt.2024.05.004

High-throughput strategy to design high entropy alloys with an FCC matrix, L12 precipitates, and optimized yield stress
de Araujo Santana, D., Ellyson, B., Clarke, A., Clarke, K., Schell, N., Kaufman, M., . . . Gil Coury, F.
(2024). Materials & Design, 244, 113173.
https://doi.org/10.1016/j.matdes.2024.113173

Local chemical fluctuation-tailored hierarchical heterostructure overcomes strength-ductility trade-off in high entropy alloys
Cai, P., Liu, J., Luan, J., Chen, J., Chen, J., Lu, X., . . . Chou, K.
(2024). Journal of Materials Science & Technology.
https://doi.org/10.1016/j.jmst.2024.06.033

High entropy alloys (FeCoNi)0.75Cr0.25-xCux – thermal stability and physical properties
Brož, P., Vřešťál, J., Sopoušek, J., Weiss, K., Buršík, J., Buršíková, V., . . . Rogl, P. F.
(2024). Journal of Alloys and Compounds, 993, 174628.
https://doi.org/10.1016/j.jallcom.2024.174628

Supersaturation and dissolvable α-Cr phase enable superior oxidation resistance in FeCrNi medium-entropy alloys
Wen, D., Jiang, B., Huang, Z., Kong, F., Jiang, X., Wang, A., . . . Wang, B.
(2023). Journal of Alloys and Compounds, 954, 170216.
https://doi.org/10.1016/j.jallcom.2023.170216

Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature applications
Wang, M., Lu, Y., Lan, J., Wang, T., Zhang, C., Cao, Z., . . . Liaw, P. K.
(2023). Acta Materialia, 248, 118806.
https://doi.org/10.1016/j.actamat.2023.118806

Strengthening Fe50+xMn25Cr15Ni10-x medium-entropy alloys by Ni/Fe replacement: Experiments and molecular dynamics study
Wang, H., Zhang, K., Chen, L., Gao, Q., Zhao, X., Chen, C., . . . Wei, R.
(2023). Intermetallics, 155, 107833.
https://doi.org/10.1016/j.intermet.2023.107833

Phase evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys by directed energy deposition
Sui, Q., Wang, Z., Wang, J., Xu, S., Yuan, Q., Wen, H., . . . Liu, J.
(2023). Materials Characterization, 204, 113217.
https://doi.org/10.1016/j.matchar.2023.113217

Reactivity of a glassy and a crystalline Fe66Cr10Nb5B19 alloy towards aluminum during sintering: A comparative study
Kvashnin, V. I., Dudina, D. V., Bokhonov, B. B., Petrov, S. A., Ukhina, A. V., Georgarakis, K., . . . Koga, G. Y.
(2023). Materials Letters, 347, 134582.
https://doi.org/10.1016/j.matlet.2023.134582

Microstructural engineering by heat treatments of multi-principal element alloys via spinodal mediated phase transformation pathways
Koneru, S. R., Kadirvel, K., Fraser, H., & Wang, Y.
(2023). Acta Materialia, 258, 119198.
https://doi.org/10.1016/j.actamat.2023.119198

A numerical method for sharp-interface simulations of multicomponent alloy solidification
Bochkov, D., Pollock, T., & Gibou, F.
(2023). Journal of Computational Physics, 112494.
https://doi.org/10.1016/j.jcp.2023.112494

Low-density CoAlTi-B2 strengthened Al-Co-Cr-Mo-Ti bcc refractory high-entropy superalloy designed with the assistance of high-throughput CALPHAD method
Yen, S.-y., Murakami, H. and Lin, S.-k.
(2023) Journal of Alloys and Compounds 952: 170027
https://doi.org/10.1016/j.jallcom.2023.170027

Microstructure and mechanical properties of Al0.4Co0.5V0.6FeNi high-entropy alloys processed by homogenization treatment
Li, Y., Yang, Z., Duan, H., Ma, Z., Wu, C., Bai, Y., Sun, C., Wang, P. and Li, J.
(2023) Intermetallics 159: 107941
https://doi.org/10.1016/j.intermet.2023.107941

A novel AlMoNbHfTi refractory high-entropy alloy with superior ductility
Huang, R., Wang, W., Li, T., Zhang, L., Amar, A., Chen, X., Ren, Z. and Lu, Y.
(2023) Journal of Alloys and Compounds 940: 168821
https://doi.org/10.1016/j.jallcom.2023.168821

Effects of structural transformation on magnetic properties of AlCoFeCr high-entropy soft magnetic powder cores by adjusting Co/Fe ratio
Gao, W., Dong, Y., Ma, Y., Wu, H., Jia, X., Liu, Z., Li, X., Zhao, R., Wu, S., Li, Q., He, A. and Li, J.
(2023) Materials & Design 225: 111537
https://doi.org/10.1016/j.matdes.2022.111537

A general approach to simulate the atom distribution, lattice distortion, and mechanical properties of multi-principal element alloys based on site preference: Using FCC_CoNiV and CoCrNi to demonstrate and compare
Chen, R., Xie, T., Wu, B., Weng, L., Ali, H., Yang, S., Zhao, Y., Zhao, P., Zhang, C., Cao, R., Wen, J., Yao, Q., Cai, Q., Zhang, H., Sa, B., Wen, C., Lin, M., Sun, X., Su, H., Liu, Y. and Wang, C.
(2023) Journal of Alloys and Compounds 935: 168016
https://doi.org/10.1016/j.jallcom.2022.168016

Newly-developed pseudo-high entropy amorphous alloys: Structure/microstructure evolution, mechanical and corrosion properties
Batalha, W. C., Roche, V., Champion, Y., Mantel, M., Verdier, M., Martin, V., Kiminami, C. S. and Jorge Junior, A. M.
(2023) Journal of Non-Crystalline Solids 613: 122369
https://doi.org/10.1016/j.jnoncrysol.2023.122369

Mechanical property enhancement of NbTiZr refractory medium-entropy alloys due to Si-induced crystalline-to-amorphous transitions
Zhan, C., Huang, D., Hu, X., Xu, K., Lou, M., Chen, L., Music, D. and Chang, K.
(2022) Surface and Coatings Technology 433: 128144
https://doi.org/10.1016/j.surfcoat.2022.128144

A reasonable approach to describe the atom distributions and configurational entropy in high entropy alloys based on site preference
Wu, B., Zhao, Y., Ali, H., Chen, R., Chen, H., Wen, J., Liu, Y., Liu, L., Yang, K., Zhang, L., He, Z., Yao, Q., Zhang, H., Sa, B., Wen, C., Qiu, Y., Xiong, H., Lin, M., Liu, Y., Wang, C. and Su, H.
(2022) Intermetallics 144: 107489
https://doi.org/10.1016/j.intermet.2022.107489

Effect of stacking fault energy on irradiation damage in reduced activation high entropy alloys
Hashimoto, N., Wada, E. and Oka, H.
(2022) Journal of Nuclear Materials 566: 153767
https://doi.org/10.1016/j.jnucmat.2022.153767

The site preference and doping effect on mechanical properties of Ni3Al-based γ′ phase in superalloys by combing first-principles calculations and thermodynamic model
Ali, H., Chen, R., Wu, B., Xie, T., Weng, L., Wen, J., Yao, Q., Su, L., Zhao, Y., Zhao, P., Sa, B., Liu, Y., Wang, C., Su, H. and Hayat, A.
(2022) Arabian Journal of Chemistry 15(11): 104278
https://doi.org/10.1016/j.arabjc.2022.104278

Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy
Yang, Y., Chen, T., Tan, L., Poplawsky, J. D., An, K., Wang, Y., Samolyuk, G. D., Littrell, K., Lupini, A. R., Borisevich, A. and George, E. P.
(2021) Nature 595(7866): 245-249
https://doi.org/10.1038/s41586-021-03607-y

High-throughput design of high-performance lightweight high-entropy alloys
Feng, R., Zhang, C., Gao, M. C., Pei, Z., Zhang, F., Chen, Y., Ma, D., An, K., Poplawsky, J. D., Ouyang, L., Ren, Y., Hawk, J. A., Widom, M. and Liaw, P. K.
(2021) Nature Communications 12(1): 4329
https://doi.org/10.1038/s41467-021-24523-9

The CALPHAD approach for HEAs: Challenges and opportunities
Zhang, C. and Yang, Y.
(2022) MRS Bulletin 47(2): 158-167
https://doi.org/10.1557/s43577-022-00284-8

Excellent strength-ductility in Ti-alloyed Fe35Ni35Cr20Mn10 high-entropy alloy
Zhou, J., Jiang, T., Liao, H., Chen, H., Zheng, J., Zhang, Y. and Zhu, W.
(2022) Intermetallics 148: 107637
https://doi.org/10.1016/j.intermet.2022.107637

Designing lightweight dual-phase refractory VNbTiSi-based eutectic high-entropy alloys for use at elevated temperatures
Wu, M., Wang, S., Xiao, F., Shen, G., Tian, Y., Yang, C., Zhu, G., Wang, D., Shu, D. and Sun, B.
(2022) Materials Science and Engineering: A 842: 143112
https://doi.org/10.1016/j.msea.2022.143112

Effect of element V on the as-cast microstructure and mechanical properties of Al0.4Co0.5VxFeNi high entropy alloys
Li, Y., Yang, Z., Ma, Z., Bai, Y., Wu, C. and Li, J.
(2022) Journal of Alloys and Compounds 911: 165043
https://doi.org/10.1016/j.jallcom.2022.165043

Hot deformation behavior and microstructure evolution of non-equimolar Ti2ZrHfV0.5Ta0.2 refractory high-entropy alloy
Li, T., Lu, Y., Li, Z., Wang, T. and Li, T.
(2022) Intermetallics 146: 107586
https://doi.org/10.1016/j.intermet.2022.107586

Effects of V content on the microstructure and mechanical properties of Nb31Ti37-xZr26Al6Vx refractory medium-entropy alloys
Huang, R., Tan, J., Li, W., Dong, Q., Li, C. J., Qin, X. M., Guo, S. F. and Lu, Y. P.
(2022) Intermetallics 143: 107472
https://doi.org/10.1016/j.intermet.2022.107472

Mechanical properties and yield strength modeling of a medium entropy alloy containing L12 precipitates
de Araujo Santana, D., Kiminami, C. S. and Coury, F. G.
(2022) Journal of Alloys and Compounds 898: 162923
https://doi.org/10.1016/j.jallcom.2021.162923

Eutectic Reaction and Microstructure Stability in CoCrFeNiNbx High-Entropy Alloys
Cao, X., Wu, C., Liu, Y., Peng, H. and Su, X.
(2022) Metals 12(5): 756
https://doi.org/10.3390/met12050756

Phase equilibria of VCrMnFeCo high entropy alloys
Bertoli, G., de Sousa, V. G. L., de A. Santana, D., Otani, L. B., Kiminami, C. S. and Coury, F. G.
(2022) Journal of Alloys and Compounds 903: 163950
https://doi.org/10.1016/j.jallcom.2022.163950

Microstructure and Tensile Mechanical Behavior of a Single-Phase Fe35Mn10Cr20Ni35 High-Entropy Alloy
Zhou, J., Liao, H., Chen, H. and Huang, A.
(2021) Journal of Materials Engineering and Performance 30(5): 3352-3362
https://doi.org/10.1007/s11665-021-05700-9

Phase Stability and Microhardness of the AlxCr2-xCoFeNi High-Entropy Alloys
Xiong, W., Wu, C., Liu, Y., Tu, H., Wang, J. and Su, X.
(2021) Journal of Phase Equilibria and Diffusion 42(3): 379-388
https://doi.org/10.1007/s11669-021-00890-0

A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures
Wang, M., Lu, Y., Wang, T., Zhang, C., Cao, Z., Li, T. and Liaw, P. K.
(2021) Scripta Materialia 204: 114132
https://doi.org/10.1016/j.scriptamat.2021.114132

Design, phase equilibria, and coarsening kinetics of a new γ/γ′ precipitation-hardened multi-principal element alloy
Santana, D. A., Santos, K. R., Kiminami, C. S. and Coury, F. G.
(2021) Journal of Alloys and Compounds 882: 160729
https://doi.org/10.1016/j.jallcom.2021.160729

Microstructure, tensile properties and deformation behaviour of a promising bio-applicable new Ti35Zr15Nb25Ta25 medium entropy alloy (MEA)
Mustafi, L., Nguyen, V. T., Lu, S. L., Song, T., Murdoch, B. J., Fabijanic, D. M. and Qian, M.
(2021) Materials Science and Engineering: A 824: 141805
https://doi.org/10.1016/j.msea.2021.141805

Stability of High Entropy Alloys to Spinodal Decomposition
Morral, J. E. and Chen, S.
(2021) Journal of Phase Equilibria and Diffusion
https://doi.org/10.1007/s11669-021-00915-8

High density of strong yet deformable intermetallic nanorods leads to an excellent room temperature strength-ductility combination in a high entropy alloy
Gwalani, B., Dasari, S., Sharma, A., Soni, V., Shukla, S., Jagetia, A., Agrawal, P., Mishra, R. S. and Banerjee, R.
(2021) Acta Materialia 219: 117234
https://doi.org/10.1016/j.actamat.2021.117234

Multi-principal element alloys from the CrCoNi family: outlook and perspectives
Coury, F. G., Zepon, G. and Bolfarini, C.
(2021) Journal of Materials Research and Technology 15: 3461-3480
https://doi.org/10.1016/j.jmrt.2021.09.095

Microstructures and mechanical properties of CrNb, CrNbTi, and CrNbTaTi concentrated refractory alloys
Butler, T. M., Senkov, O. N., Velez, M. A. and Daboiku, T. I.
(2021) Intermetallics 138: 107323
https://doi.org/10.1016/j.intermet.2021.107323

Microstructure and Wear Behavior of High-Carbon Concentration CrCoNi Multi-principal Element Alloys
Bertoli, G., Koga, G. Y., Puosso, F. C., Clarke, A. J., Kiminami, C. S. and Coury, F. G.
(2021) Metallurgical and Materials Transactions A 52(7): 3034-3050
https://doi.org/10.1007/s11661-021-06297-3

Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design-A case study with Al–Co–Cr–Fe–Ni system
Yang, S., Lu, J., Xing, F., Zhang, L. and Zhong, Y.
(2020) Acta Materialia 192: 11-19
https://doi.org/10.1016/j.actamat.2020.03.039

CALPHAD aided eutectic high-entropy alloy design
Wu, M., Wang, S., Huang, H., Shu, D. and Sun, B.
(2020) Materials Letters 262: 127175
https://doi.org/10.1016/j.matlet.2019.127175

Cuboid-like nanostructure strengthened equiatomic Ti–Zr–Nb–Ta medium entropy alloy
Nguyen, V. T., Qian, M., Shi, Z., Tran, X. Q., Fabijanic, D. M., Joseph, J., Qu, D. D., Matsumura, S., Zhang, C., Zhang, F. and Zou, J.
(2020) Materials Science and Engineering: A 798: 140169
https://doi.org/10.1016/j.msea.2020.140169

Deformation substructural evolution in transformation-induced plasticity high-entropy alloy during cold rolling
Liu, Y., Tu, J., Tang, Y., Zhu, H., Huang, C., Zhang, Y.-b., Tan, L. and Zhou, Z.-m.
(2020) Materials Letters 272: 127885
https://doi.org/10.1016/j.matlet.2020.127885

Corrosion and Thermal Stability of CrMnFeNi High Entropy Alloy in Molten FLiBe Salt
Elbakhshwan, M., Doniger, W., Falconer, C., Moorehead, M., Parkin, C., Zhang, C., Sridharan, K. and Couet, A.
(2019) Scientific Reports 9(1): 18993
https://doi.org/10.1038/s41598-019-55653-2

Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance
Shi, Y., Collins, L., Feng, R., Zhang, C., Balke, N., Liaw, P. K. and Yang, B.
(2018) Corrosion Science 133: 120-131
https://doi.org/10.1016/j.corsci.2018.01.030

Phase stability and transformation in a light-weight high-entropy alloy
Feng, R., Gao, M. C., Zhang, C., Guo, W., Poplawsky, J. D., Zhang, F., Hawk, J. A., Neuefeind, J. C., Ren, Y. and Liaw, P. K.
(2018) Acta Materialia 146: 280-293
https://doi.org/10.1016/j.actamat.2017.12.061

Influence of Cr Substitution and Temperature on Hierarchical Phase Decomposition in the AlCoFeNi High Entropy Alloy
Chaudhary, V., Gwalani, B., Soni, V., Ramanujan, R. V. and Banerjee, R.
(2018) Scientific Reports 8(1)
https://doi.org/10.1038/s41598-018-33922-w

Understanding of the Elemental Diffusion Behavior in Concentrated Solid Solution Alloys
Zhang, C., Zhang, F., Jin, K., Bei, H., Chen, S., Cao, W., Zhu, J. and Lv, D.
(2017) Journal of Phase Equilibria and Diffusion 38(4): 434-444
https://doi.org/10.1007/s11669-017-0580-5

Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal
Rao, J. C., Diao, H. Y., Ocelík, V., Vainchtein, D., Zhang, C., Kuo, C., Tang, Z., Guo, W., Poplawsky, J. D., Zhou, Y., Liaw, P. K. and De Hosson, J. T. M.
(2017) Acta Materialia 131: 206-220
https://doi.org/10.1016/j.actamat.2017.03.066

High Entropy Alloys, Miscibility Gaps and the Rose Geometry
Morral, J. E. and Chen, S.-L.
(2017) Journal of Phase Equilibria and Diffusion 38(3): 319-331
https://doi.org/10.1007/s11669-017-0547-6

Evaluation of Calphad Approach and Empirical Rules on the Phase Stability of Multi-principal Element Alloys
Liang, S. M. and Schmid-Fetzer, R.
(2017) Journal of Phase Equilibria and Diffusion 38(4): 369-381
https://doi.org/10.1007/s11669-017-0577-0

Thermodynamics of concentrated solid solution alloys
Gao, M. C., Zhang, C., Gao, P., Zhang, F., Ouyang, L. Z., Widom, M. and Hawk, J. A.
(2017) Current Opinion in Solid State and Materials Science 21(5): 238-251
https://doi.org/10.1016/j.cossms.2017.08.001

Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys
Zhang, C., Zhang, F., Diao, H., Gao, M. C., Tang, Z., Poplawsky, J. D. and Liaw, P. K.
(2016) Materials & Design 109: 425-433
https://doi.org/10.1016/j.matdes.2016.07.073

CALPHAD Modeling of High-Entropy Alloys
Zhang, C. and Gao, M. C.
(2016) High-Entropy Alloys: Fundamentals and Applications. Gao, M. C., Yeh, J.-W., Liaw, P. K. and Zhang, Y. Cham, Springer International Publishing: 399-444
https://doi.org/10.1007/978-3-319-27013-5_12

High temperature oxidation and corrosion properties of high entropy superalloys
Tsao, T. K., Yeh, A. C., Kuo, C. M. and Murakami, H.
(2016) Entropy 18(2)
https://doi.org/10.3390/e18020062

CALPHAD and the High Entropy Alloy
Zhang, F. and Kattner, U.
(2015) Journal of Phase Equilibria and Diffusion 36(1): 1-2
https://doi.org/10.1007/s11669-014-0360-4

Accelerated exploration of multi-principal element alloys for structural applications
Senkov, O. N., Miller, J. D., Miracle, D. B. and Woodward, C.
(2015) Calphad 50: 32-48
https://doi.org/10.1016/j.calphad.2015.04.009

Accelerated exploration of multi-principal element alloys with solid solution phases
Senkov, O. N., Miller, J. D., Miracle, D. B. and Woodward, C.
(2015) Nature Communications 6: 6529
https://doi.org/10.1038/ncomms7529

An understanding of high entropy alloys from phase diagram calculations
Zhang, F., Zhang, C., Chen, S. L., Zhu, J., Cao, W. S. and Kattner, U. R.
(2014) Calphad 45: 1-10
https://doi.org/10.1016/j.calphad.2013.10.006

Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys
Senkov, O. N., Senkova, S. V. and Woodward, C.
(2014) Acta Materialia 68: 214-228
https://doi.org/10.1016/j.actamat.2014.01.029

Exploration and Development of High Entropy Alloys for Structural Applications
Miracle, D. B., Miller, J. D., Senkov, O. N., Woodward, C., Uchic, M. D. and Tiley, J.
(2014) Entropy 16(1): 494-525
https://doi.org/10.3390/e16010494

Microstructures and Crackling Noise of AlxNbTiMoV High Entropy Alloys
Chen, S. Y., Yang, X., Dahmen, K. A., Liaw, P. K. and Zhang, Y.
(2014) Entropy 16(2): 870-884
https://doi.org/10.3390/e16020870

Phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy: Comparison of experimental and simulated data
Senkov, O. N., Zhang, F. and Miller, J. D.
(2013) Entropy 15(9): 3796-3809
https://doi.org/10.3390/e15093796

Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis
Senkov, O. N., Senkova, S. V., Woodward, C. and Miracle, D. B.
(2013) Acta Materialia 61(5): 1545-1557
https://doi.org/10.1016/j.actamat.2012.11.032

Computational Thermodynamics Aided High-Entropy Alloy Design
Zhang, C., Zhang, F., Chen, S. and Cao, W.
(2012) JOM Journal of the Minerals, Metals and Materials Society 64(7): 839-845
https://doi.org/10.1007/s11837-012-0365-6%5B/vc_column_text%5D%5B/vc_column%5D%5B/vc_row%5D%5Bvc_row%5D%5Bvc_column%5D%5Bvc_column_text%5D